
Gödel’s Incompleteness Theorem 
 

Overview 

Computability and Logic 



Recap 

• Remember what we set out to do in this 
course:  Trying to find a systematic method 
(algorithm, procedure) which we can use to 
decide, for any statement about mathematics, 
whether that statement is true or false. 
 

• In short: Is there a decision procedure for 
mathematical truth? 



Our Formal Logic-Based Attempt 

• Our initial attempt was based on formal logic: 
1. Use FOL to symbolize statements about 

mathematics 
2. Declare a subset of these statements as axioms: 

statements that we know to be true 
3. Try to decide the truth of any mathematical 

statement by deciding whether or not it is a 
logical consequence of the axioms 

 



Formal Proofs 

• For step 3, we contemplated the use of formal 
proofs. 

• That is, maybe we can rephrase the question:  
“Is statement S a logical consequence of axiom set 

A?”  

with:  
“Can statement S be formally derived from axiom 

set A?” 



Some Immediate Issues 

• Formal proofs demonstrate consequence, but not 
non-consequence 

• Formal proof systems themselves aren’t systematic 
 

• But maybe a systematic method can nevertheless be 
created on the basis of formal logic? 
– Truth trees are systematic … and can demonstrate 

consequence as well as non-consequence. Cool! 
• … but sometimes trees get infinitely long. Not cool! 

– Is there some other procedure? … not sure. Let’s set this 
question aside. 



Peano Axioms 

• We tried a very small set of 6 axioms, called the Peano 
axioms, designed for a small subset of mathematics: natural 
number arithmetic. 

• We found that we could indeed prove several (non-trivial) 
theorems about arithmetic from the Peano Axioms. Cool! 

• We also found that some arithmetical truths could not be 
derived from the original 6 Peano axioms. Not cool! 

• But then we also found that if we added an axiom scheme 
reflecting mathematical induction, we could prove many more 
arithmetical truths. Cool! 

• Can all arithmetical truths be derived from this set? In other 
words, is PA complete? … Not sure. Let’s set this question 
aside for a bit as well. 



Gödel’s Completeness Result: 
FOL is Complete! 

• In 1929, Gödel showed that for any axiom set A and 
statement S, if S is a logical consequence of A, then 
there exists a formal proof that derives S from A. 

• Cool! So yes, we can replace the question about 
consequence with a question about provability. 

• Now we just need a procedure that eventually: 
1. Derives S from A if S follows from A 
2. Concludes that S cannot be derived from A if S does not 

follow from A 

• Let’s go back to the question “Is PA (or some other 
axiom set) complete for arithmetic?” 



Expressive Completeness 

• Notice that PA uses LA = {0, s, +, *} as its only non-logical 
symbols. 

• Can all arithmetical statements be expressed using this very 
restricted set of symbols? 

• How, for example, would you even express the Fundamental 
Theorem of Arithmetic (every number has a unique prime 
factorization)? Is that even possible? 

• Again, we’ll set this question aside for now. 
• For now, we can contemplate a notion of completeness 

relative to our language LA: 
– Axiom set A is complete iff for all S� LA : if S is true (i.e. if for standard 

interpretation N: N ⊨ S), then A ⊨ S.  



A Trivially Complete Axiom Set 

• Consider A = {⊥}.  
– Clearly, A is complete: all arithmetical truths can 

be derived from A! Cool! 
– But: all arithmetical falsehoods can be derived 

from A as well! Not cool! … Very not cool! 
– OK, so any axiom set we want should be sound: all 

statements that follow from it should be true. 
 



Another Trivially Complete Axiom Set 

• Consider A = {S �  LA | N ⊨ S} 
– Again, clearly, A is complete. Cool! 
– OK, but this isn’t what we would intuitively consider an ‘axiom set’: it 

goes against the whole idea of deriving all theorems from a small set 
of basic and elementary truths. Not cool! 

– More importantly, we can’t work with this as part of any effective 
procedure. We don’t know what the axioms are. We don’t have an 
‘effective’ starting point. Very not cool! 

– So, any axiom set should be such that for any statement, we can 
effectively decide whether or not it is an axiom. 

• Notice that this does allow the inductive axiom scheme, representing an 
infinite number of axioms, as part of the axiom set 

– By the Church-Turing Thesis, deciding whether some object is an 
element of some set amounts to that S being recursive.  

– So, is there a sound and recursive axiom set A that is complete? 



Gödel’s Incompleteness Result (1931): 
Arithmetic is Incomplete 

• In 1931, the bomb dropped: Kurt Gödel 
proved that There is no complete (sound and 
recursive) axiom set for natural number 
arithmetic. 
 

• Gödel’s Incompleteness Theorem is regarded 
as one of the most important theorems of the 
20th century! 



The Liar Paradox 
• Consider the following statement P: 

– This statement is false 
 

• If P is true, then P is false, and if P is false, then P is true. 
Contradiction! 
 

• OK, so what does this mean? 
– That not every statement is true or false? 
– That only meaningful statements are true or false, but statement is 

not meaningful? 
– Nobody really knows how to think about this or how to resolve the 

paradox! 
 

• Gödel’s proof feels very much like the Liar Paradox! 



Gödel Numbering 

• Key to Gödel’s proof was his Gödel numbering: 
using numbers to encode FOL symbols, 
expressions, proof structures, and other kinds of 
syntactical FOL objects. 

• The encoding is effective: given an FOL object, 
there is an effective procedure to encode that 
object. 

• The decoding is effective too: given an encoding 
of some FOL object, one can effectively figure out 
what object is being encoded. 



Definability 

• Gödel next showed that various kinds of properties, 
relations, and functions regarding natural numbers 
(in particular, those that are relevant to the Gödel 
encodings) can be expressed (‘defined’) by FOL 
statements using the language of arithmetic {0, s, +, 
*} as its non-logical symbols. 

• E.g. ‘primeness’ is definable since there is an FOL 
expression using {0, s, +, ×} as its only non-logical 
symbols that ‘captures’ primeness:  

 x is prime iff   ∃z s(s(0) + z) = x ∧ ∀y (∃z s(y +z) = x → 
(∃z y × z = x → (y = s(0) ∨ y = x))) 



Self-Reference 

• Since (some) numbers represent FOL objects 
according to the Gödel numbering, FOL 
statements about numbers can be used to 
make statements about … FOL statements 
(and other FOL objects)! 
 



Coding Syntactical Properties 

• E.g. We can define a formula “Sentence(x)” 
which will be true iff x is the Gödel number of 
a FOL sentence. In other words, ‘sentence-
ness’ is definable (in LA). 
 

• You can also show that for any recursive set of 
axioms A (expressed in LA), there is a definable 
(in LA) expression Axiom(x) such that Axiom(n) 
is true iff n is the Gödel number of some 
axiom in A. (remember: n = s(s( …s(0) ..)) (n 
times)) 



Inference Relationships 
• An especially important syntactical claim about 

statements in LA is the inferential relationship. 
• Gödel showed that given some syntactical inference 

rule R you can define an expression DerivableR(x,y) 
that states that y is the code of some sentence that 
can be syntactically derived by a set of sentences 
encoded by x. 

• So, if you take some sound and complete system S of 
inference (which Gödel showed exists), you can 
define Implies(x,y) that states that y is the code of 
some sentence that is logically implied by a set of 
sentences encoded by x. 



Proof Properties 

• Gödel then showed that for any recursive set 
of axioms A, there is a definable expression 
Proof(x,y) such that Proof(n,m) is true iff n is 
the code of a proof whose premises are 
members of A and whose conclusion is a 
sentence whose code is m (for this you use 
the Axiom(x) and Implies(x,y) expressions). 

• This means that there is also a formula 
Provable(x) = ∃y Proof(y,x) that defines the 
property of being provable from A. 

• So: ¬Provable(x) defines “unprovability (from 
A)”! 



The Diagonal Lemma 

• A final key step in Godel’s proof was to prove 
the Diagonal Lemma: 

• For any wff A(x) there exists a sentence G such 
that G is logically equivalent to A(g), where g is 
the Gödel number of G. 

• In other words, for any formula (property) 
A(x), there is a sentence that says “I have 
property A(x)” 



Gödel Sentences 

• By the Diagonal Lemma, for any recursive and 
sound set of axioms A, there exists a sentence 
G such that G is equivalent to ¬Provable(g) 
where g is the Gödel number of G. 

• This G is called the “Gödel sentence”, which 
basically says “I am not provable (from A)”. 

• Now, if GA is false, then it can be proven from 
A. But that would mean that A is not sound. 
Since A is sound, that means that GA is true. 
So it is true that GA is not derivable from A. So, 
there is a true statement that cannot be 
derived from A: A is incomplete! 



End 



Part III - Representability 

• In fact, Gödel showed that various statements 
about these properties are logical consequences 
of (‘represented by’) the 6 Peano Axioms. 

• E.g. for any prime number n, the FOL expression 
“Prime(n)” is a consequence of PA1-6. That is, 
where n = s(s(…s(0)…)) (n times): 
– i.e. ∃z s(s(0) + z) = n ∧ ∀y (∃z s(y +z) = n → ∃z (y * z = 

n → (y = s(0) ∨ y = n))) can be derived from PA1-6 



Coding Syntactical Properties 
• E.g. We can define a formula “Sentence(x)” which 

will be true iff x is the Gödel number of a FOL 
sentence, and we can show that if n is the Gödel 
number of a sentence, then “Sentence(n)” can be 
derived from PA1-6. In other words, ‘sentence-ness’ 
is definable (in LA) and representable (in PA). 
 

• You can also show that for any recursive set of 
axioms A (expressed in LA) that is at least as strong as 
PA, there is a definable (in LA) and representable (in 
A) expression Axiom(x) such that Axiom(n) is true iff 
n is the Gödel number of some axiom in A. 
 



Sketch of Proof of  
Diagonal Lemma I 

• The diagonalization of an expression A(x) (of 
LA) is the expression ∃x (x = a ∧ A(x)), where a 
is the Gödel number of A. 

• There is a formula Diag(x,y) such that 
Diag(m,n) is true iff n is the Gödel number of 
the diagonalization of the expression whose 
Gödel number is m. 



Sketch of Proof of  
Diagonal Lemma II 

• Let A(x) be the formula ∃y (Diag(x, y) ∧ B(y)), 
with Gödel number a. 

• Let G be the diagonalization of A(x), i.e. G is 
the sentence ∃x (x = a ∧ ∃y (Diag(x, y) ∧ B(y))) 

• So G basically says: “The diagonalization of 
A(x) has property B”. 

• But since the diagonalization of A(x) is G itself, 
G ends up saying “I have property B” 
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